MN325 ## Highly Saturated Nitrile Butadiene Elastomer (HNBR) ## **SPECIFICATIONS** | Property | Method | Requirement | Result | |---|--|--|------------------------------------| | Physical Properties – DH910
Hardness
Tensile Strength
Elongation
Specific Gravity | D2240
D412 Die C
D412 Die C
D1817 | 95 ± 5
10 min.
100 min.
- | 93
19.7 MPa
206 %
1.30 | | Heat Resistance – (150°C x
70 hrs.) –DH Basic
Requirement
Hardness Change
Tensile Strength Change
Elongation Change
Volume Change | D573 | ±15
±30
-50 max
- | +3 points
+6 %
-41 %
-3 % | | Compression Set – (150°C x
22 hrs.) – B36 | D395B | 50 max. | 49 % | | ASTM No. 1 Oil – (150°C x 70
hrs.) – E016
Hardness Change
Tensile Strength Change
Elongation Change
Volume Change | D471 | -5 to +10
-20 max.
-30 max.
±5 | +1 points
+5 %
-18 %
-4 % | | IRM 903 Oil – (150°C x 70
hrs.) – E036
Hardness Change
Tensile Strength Change
Elongation Change
Volume Change | D471 | -15 max.
-30 max.
-30 max.
+25 max. | -5 points
-3 %
-10 %
+8 % | | Operating Temperature | | | -25 to 150° C
-13 to 302° F | ## **DESCRIPTION** MN325 is a HNBR material with hardness 95±5 Shore A. The first commercialization of hydrogenated nitrile elastomer HNBR copolymer was in 1984, almost 50 years after the commercialization of NBR. To obtain HNBR, NBR is hydrogenated during the polymer synthesis process. Hydrogen is selectively added to the unsaturated carboncarbon double bonds, -C=C-, of butadiene in the NBR polymer to form saturated carbon-carbon single bonds -C-C-. Thus HNBR emphasizes two essential features: nitrile, -C=N, functional groups as in NBR and a hydrogenated backbone. The nitrile polar group is responsible for HNBR's excellent oil and fuel resistance. The hydrogenated backbone is responsible for HNBR's significantly increased high temperature properties compared to NBR. HNBR has very good ozone and weather resistance thanks to its saturated backbone.